જો સુરેખ રેખાઓની સહંતિ $x-2 y+z=-4 $ ; $2 x+\alpha y+3 z=5 $ ; $3 x-y+\beta z=3$ ને અનંત ઉકેલ હોય તો $12 \alpha+13 \beta$ ની કિમંત મેળવો.
$60$
$64$
$54$
$58$
જો $(-2,0),(0,4),(0, \mathrm{k})$ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ $4$ ચોરસ એકમ હોય, તો $\mathrm{k}$ નું મૂલ્ય શોધો.
ધન સંખ્યાઓ $x,y$ અને $z$ માટે નિશ્રાયક $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$ ની કિમત મેળવો.
નિશ્ચાયકની કિમત મેળવો : $\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$
સમીકરણની સંહતિ $3x + y + 2z = 3,$ $2x - 3y - z = - 3$, $x + 2y + z = 4,$ નું સમાધાન કરે તેવી $x,y,z$ ની કિમત અનુક્રમે . . . . થાય.
$\alpha, \beta \in R$ માટે, ધારો કે સુરેખ સમીકરણ સંહતિ $x-y+z=5$ ; $2 x+2 y+\alpha z=8$ ; $3 x-y+4 z=\beta$ ને અસંખ્ય ઉકેલો છે. તો $\alpha$ અને $\beta$ એ $........$ ના બીજ છે.